We present a semi-analytical calculation of the global star formation density (SFD) by using the well constrained cold dark matter (CDM) halo mass function. Both, halo masses MH(z) and stellar masses M*(z) are taken from observations of Lyα emitter (LAEs) and/or Lyman break galaxies (LBGs). Most of them, spectroscopically selected, are characterized by high star formation rates. The view of galaxy formation is mainly based on the hierarchical (“botton-up”) cold dark matter model for structure formation. We have used the connection between the halo mass and the star formation rate in galaxies of the halo mass MH at redshift z. Our model has the advantage that we are able to calculate the global star formation rate ρ*(z) (in Mʘy-1Mpc-3) by a closed equation. All parameters (MH; M* and n) have a well-defined physical meaning. From the CDM spectrum, the power law index of the halo mass function is well constrained. Our results are compiled in Table 1 and Figure 1. Here our results are compared with observations and hydrodynamical simulations. The physical meaning of the evolution of comoving cosmic star density as a function of redshift with three epochs is discussed. We find a good agreement between the SFD inferred from observations and our model in the range of redshifts z = 0 - 7.
Published in | American Journal of Modern Physics (Volume 10, Issue 1) |
DOI | 10.11648/j.ajmp.20211001.11 |
Page(s) | 1-6 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2021. Published by Science Publishing Group |
Galaxies: Evolution, Galaxies: High Redshift, Galaxies: Star Formation
[1] | Kashikawa, N., Shimasku, K., Matsuda, Y. et al. 2011, ApJ, 734, 119. |
[2] | Steidel, C. C., Shapley, A. E., Pettini, M. et al. 2004, ApJ, 604, 534. |
[3] | Yajima, H., Li, Y., Zhu, Q. et al. 2012, ApJ, 754, 118. |
[4] | Papovich, C., Dickinson, M. & Ferguson, H. C. 2001, ApJ, 559, 620. |
[5] | Stark, D. P. 2016, ARA & A, 54, 761. |
[6] | De Rosa, G., Decarli, R., Walter, F. et al. 2011, ApJ, 739, 56. |
[7] | O’Shea, B. W. & Norman, M. L. 2007, ApJ, 654, 66. |
[8] | Fan, X., Carilli, C. & Keating, R. 2006, ARAA; 44, 415. |
[9] | Becker, G. D., Rauch, M. & Sargent,W. L.W. 2007, ApJ, 662, 72. |
[10] | Madau, P., Ferguson, H. C., Dickinson, M. et al. 1996, MNRAS, 283, 1388. |
[11] | Tully, B. & Fischer, R. 1977, A & A, 54, 661. |
[12] | Bouch´e, N., Dekel, A., Genzel, R. et al. 2010, ApJ, 718, 1001. |
[13] | Mo, H., van den Bosch, F. & White, S. 2011, Galaxy Formation and Evolution (Cambridge Univ. Press, Cambridge). |
[14] | Hibon, P., Kashikawa, N., Willott, C. et al. 2012, ApJ, 744, 89. |
[15] | Longair, M. S. 1998, Galaxy Formation (Springer Berlin). |
[16] | Schneider, P. 2006, Extragalactic Astronomy and Cosmology (Springer Berlin Heidelberg New York). |
[17] | Peebles, P. J. E. 1993, Principles of Physical Cosmology (Princeton Unv. Press, Princeton New Jersey). |
[18] | Gradshteyn, I. S. & Ryzhik, J. M. 1980, Table of Integrals, Series and Products (fourth edition, Academic Press, San Diego). |
[19] | Ouchi, M., Shimasaku, K., Furusawa, H., et al. 2010, ApJ, 723, 869. |
[20] | Pillepich, A., Springel, V., Nelson, D. et al. 2017, arXiv:1703.02970v2. 6 Joachim Wirsich: The Evolution of Star Formation Rate Density of Galaxies |
[21] | Behroozi, P. S., Wechsler, R. H. & Conroy, C. 2013, ApJ, 770, 57. |
[22] | Gonz´ales, V., Labb´e, I., Bouwens, R. J. et al. 2010, ApJ, 713, 115. |
[23] | Yan, H., Yan, L., Zamojski, M. A. et al. 2011, ApJ, 728, L22. |
[24] | Yabe, K., Ohta, K., Iwata, I. et al. 2009, ApJ, 693 ,507. |
[25] | Reddy, N. A., Erb, D. K., Steidel, C. C. et al. 2005, ApJ, 633, 748. |
[26] | Steidel, C. C., Erb, D. K., Shapley, A. E. et al. 2010, ApJ, 717, 289. |
[27] | Noeske, K. G., Faber, S. M., Weiner, B. J. et al. 2007, ApJ, 660, L47. |
[28] | Burgarella, D., Heinis, S., Magdis, G. et al. 2011, ApJ, 734, L12. |
[29] | Spaans, M. & Carollo, C. M. 1997, ApJ, 482, L93. |
[30] | Treu, T., M¨oller, P. & Bertin, G. 2002, ApJ, 564, L13. |
[31] | Li, J.,Wang, Q. D., Li, Z. & Chen, Y. 2009 ApJ, 706, 693. |
[32] | Overzier, R. A., Heckmann, T. M., Tremonti, C. et al. 2009, ApJ, 706, 203. |
[33] | Oesch, P. A., Bouwens, R. J., Illingworth, G. D. et al. 2012, ApJ, 759, 135. |
[34] | Bouwens, R. J., Illingworth, G. D., Oesch, P. A. et al. 2012, ApJ, 754, 83. |
[35] | Dunlop, J. S. 2016, The Messenger, 166, 48. |
[36] | Zaritsky, D., Kennicutt, Jr., R.C. & Huchra, J.B. 1994, ApJ, 420, 87. |
[37] | Adelberger, K. L, Steidel, C. C., Pettini, M. et al. 2005, ApJ, 619, 697. |
[38] | Labb´e, I., Bouwens, R., Illingworth, G. D. & Franx, M. 2006 ApJ, 649, L67. |
[39] | Hopkins, A. M. 2004, ApJ, 615, 209. |
[40] | Ciardullo, R., Gronwall, C., Wolf, C. et al. 2012, ApJ, 744, 110. |
[41] | Harrison, C., Alexander, D., Mullanney, M. et al. 2016, The Messenger, 163, 35. |
[42] | Xue, X. X., Rix, H. W., Zhao, G. et al. 2008, ApJ, 684, 1143. |
[43] | Jonsson, P., Cox; T. J., Primack, J. R. & Somerville, R. S. 2006, ApJ, 637, 255. |
[44] | Stark, D. P., Ellis, R. S., Bunker, A. et al. 2009, ApJ, 697, 1493. |
[45] | Gonz´ales, V., Bouwens, R. J. Illingworth, G. et al. 2014, ApJ, 781, 34. |
[46] | Yan, H., Dickinson, M., Giavalisco, M. et al. 2006, ApJ, 651,24. |
[47] | Ryan, R. E., McCarthy, P. J., Cohen, S. H. et al. 2012, ApJ, 749, 53. |
[48] | Rigopoulou, D., Huang, J. S., Papovich, C. et al. 2006, ApJ, 648, 81. |
[49] | Reddy, N. A. & Steidel, C. C. 2009, ApJ, 692, 778. |
[50] | Humphrey, P. J., Buote, D. A., O’Sullivan, E. & Ponman, T. J. 2012, ApJ, 755, 166. |
APA Style
Joachim Wirsich. (2021). The Evolution of Star Formation Rate Density of Galaxies. American Journal of Modern Physics, 10(1), 1-6. https://doi.org/10.11648/j.ajmp.20211001.11
ACS Style
Joachim Wirsich. The Evolution of Star Formation Rate Density of Galaxies. Am. J. Mod. Phys. 2021, 10(1), 1-6. doi: 10.11648/j.ajmp.20211001.11
AMA Style
Joachim Wirsich. The Evolution of Star Formation Rate Density of Galaxies. Am J Mod Phys. 2021;10(1):1-6. doi: 10.11648/j.ajmp.20211001.11
@article{10.11648/j.ajmp.20211001.11, author = {Joachim Wirsich}, title = {The Evolution of Star Formation Rate Density of Galaxies}, journal = {American Journal of Modern Physics}, volume = {10}, number = {1}, pages = {1-6}, doi = {10.11648/j.ajmp.20211001.11}, url = {https://doi.org/10.11648/j.ajmp.20211001.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajmp.20211001.11}, abstract = {We present a semi-analytical calculation of the global star formation density (SFD) by using the well constrained cold dark matter (CDM) halo mass function. Both, halo masses MH(z) and stellar masses M*(z) are taken from observations of Lyα emitter (LAEs) and/or Lyman break galaxies (LBGs). Most of them, spectroscopically selected, are characterized by high star formation rates. The view of galaxy formation is mainly based on the hierarchical (“botton-up”) cold dark matter model for structure formation. We have used the connection between the halo mass and the star formation rate in galaxies of the halo mass MH at redshift z. Our model has the advantage that we are able to calculate the global star formation rate ρ*(z) (in Mʘy-1Mpc-3) by a closed equation. All parameters (MH; M* and n) have a well-defined physical meaning. From the CDM spectrum, the power law index of the halo mass function is well constrained. Our results are compiled in Table 1 and Figure 1. Here our results are compared with observations and hydrodynamical simulations. The physical meaning of the evolution of comoving cosmic star density as a function of redshift with three epochs is discussed. We find a good agreement between the SFD inferred from observations and our model in the range of redshifts z = 0 - 7.}, year = {2021} }
TY - JOUR T1 - The Evolution of Star Formation Rate Density of Galaxies AU - Joachim Wirsich Y1 - 2021/02/20 PY - 2021 N1 - https://doi.org/10.11648/j.ajmp.20211001.11 DO - 10.11648/j.ajmp.20211001.11 T2 - American Journal of Modern Physics JF - American Journal of Modern Physics JO - American Journal of Modern Physics SP - 1 EP - 6 PB - Science Publishing Group SN - 2326-8891 UR - https://doi.org/10.11648/j.ajmp.20211001.11 AB - We present a semi-analytical calculation of the global star formation density (SFD) by using the well constrained cold dark matter (CDM) halo mass function. Both, halo masses MH(z) and stellar masses M*(z) are taken from observations of Lyα emitter (LAEs) and/or Lyman break galaxies (LBGs). Most of them, spectroscopically selected, are characterized by high star formation rates. The view of galaxy formation is mainly based on the hierarchical (“botton-up”) cold dark matter model for structure formation. We have used the connection between the halo mass and the star formation rate in galaxies of the halo mass MH at redshift z. Our model has the advantage that we are able to calculate the global star formation rate ρ*(z) (in Mʘy-1Mpc-3) by a closed equation. All parameters (MH; M* and n) have a well-defined physical meaning. From the CDM spectrum, the power law index of the halo mass function is well constrained. Our results are compiled in Table 1 and Figure 1. Here our results are compared with observations and hydrodynamical simulations. The physical meaning of the evolution of comoving cosmic star density as a function of redshift with three epochs is discussed. We find a good agreement between the SFD inferred from observations and our model in the range of redshifts z = 0 - 7. VL - 10 IS - 1 ER -