Chaotic properties of nuclear energy spectra in A=32 nuclei are investigated via the framework of the nuclear shell model. The energies (the main object of this investigation) are calculated through accomplishing shell model calculations employing the OXBASH computer code with the realistic effective interaction of W in the isospin formalism. The A=32 nuclei are supposed to have an inert 16O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian calculations, the spectral fluctuations (i.e., the nearest neighbor level spacing distributions P(S) and the Δ3 statistics) are well characterized by the Gaussian orthogonal ensemble of random matrices. Besides, they show no dependency on the spin J and isospin T. For unperturbed hamiltonian calculations, we find a regular behavior for the distribution of P(S) and an intermediate behavior between the GOE and the Poisson limits for the Δ3 statistics.
Published in | American Journal of Physics and Applications (Volume 5, Issue 3) |
DOI | 10.11648/j.ajpa.20170503.11 |
Page(s) | 35-40 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2017. Published by Science Publishing Group |
Quantum Chaos, Random Matrix Theory, Spectral Fluctuations, Shell Model Calculations
[1] | F. Haak, Quantum signature of chaos, 2nd enlarged ed. (Springer-Verlag, Berlin, 2001). |
[2] | O. Bohigas, M. J. Giannoni and C. Schmit, Phys. Rev. Lett. 52, 1 (1986). |
[3] | S. Heusler, S. Muller, A. Altland, P. Braun, and F. Haak, Phys. Rev. Lett. 98, 044103 (2007). |
[4] | M. L. Mehta, Random Matrices, 3nd ed. (Academic, New York, 2004). |
[5] | T. Papenbrock, and H. A. Weidenmuller, Rev. Mod. Phys., Vol. 79, No. 3., 997 (2007). |
[6] | C. E. Porter, Statistical Theories of Spectra: Fluctuations (Academic, New York, 1965). |
[7] | T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey and S. S. M. Wong, Rev. Mod. Phys. 53, 385 (1981). |
[8] | T. Guhr, A. Mü ller-Groeling and H. A. Weidenm ü ller, Phys. Rep. 299, 189 (1998). |
[9] | Y. Alhassid, Rev. Mod. Phys. 72, 895 (2000). |
[10] | M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer-Verlag, New York, 1990). |
[11] | Y. Alhassid, A. Novoselsky and N. Whelan, Phys. Rev. Lett. 65, 2971 (1990); Y. Alhassid and N. Whelan, Phys. Rev. C 43, 2637 (1991). |
[12] | Y. Alhassid and A. Novoselsky, Phys. Rev. C 45, 1677 (1992). |
[13] | Y. Alhassid and D. Vretenar, Phys. Rev. C 46, 1334 (1992). |
[14] | V. Zelevinsky, B. A. Brown, N. frazier and M. Horoi, Phys. Rep. 276, 85 (1996). |
[15] | R. R. Whitehead et al., Phys. Lett. B 76, 149 (1978). |
[16] | J. J. M. Verbaarschot and P. J. Brussaard, Phys. Lett. B 87, 155 (1979). |
[17] | B. A. Brown and G. Bertsch, Phys. Lett. B 148, 5(1984). |
[18] | H. Dias et al., J. Phys. G 15, L79 (1989). |
[19] | V. Zelevinsky, M. Horoi and B. A. Brown, Phys. Lett. B 350, 141 (1995). |
[20] | A. Hamoudi, R. G. Nazmidinov, E. Shahaliev and Y. Alhassid, Phys. Rev. C65, 064311 (2002). |
[21] | P. W. M. Glaudemans, P. J. Brussaard and R. H. Wildenthal, Nucl. Phys. A 102, 593 (1976). |
[22] | A. Hamoudi, Nucl. Phys. A 849, 27 (2011). |
[23] | A. Hamoudi and A. Abdul Majeed Al-Rahmani, Nucl. Phys. A 892, 21 (2012). |
[24] | F. S. Stephens, M. A. Deleplanque, I. Y. Lee, A. O. Macchiavelli, D. Ward, P. Fallon, M. Cromaz, R. M. Clark, M. Descovich, R. M. Diamond, and E. Rodriguez-Vieitez, Phys. Rev. Lett., 94, 042501 (2005). |
[25] | A. B. Brown, A. Etchegoyen, N. S. Godin, W. D. M. Rae, W. A. Richter, W. E. Ormand, E. K. Warburton, J. S. Winfield, L. Zhao and C. H. Zimmermam, MSU-NSCL Report Number 1289. |
[26] | B. H. Wildenthal, Prog. Part. Nucl. Phys. 11, 5 (1984). |
APA Style
Adel Khalaf Hamoudi, Thuraya Amer AbdulHussein. (2017). Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model. American Journal of Physics and Applications, 5(3), 35-40. https://doi.org/10.11648/j.ajpa.20170503.11
ACS Style
Adel Khalaf Hamoudi; Thuraya Amer AbdulHussein. Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model. Am. J. Phys. Appl. 2017, 5(3), 35-40. doi: 10.11648/j.ajpa.20170503.11
AMA Style
Adel Khalaf Hamoudi, Thuraya Amer AbdulHussein. Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model. Am J Phys Appl. 2017;5(3):35-40. doi: 10.11648/j.ajpa.20170503.11
@article{10.11648/j.ajpa.20170503.11, author = {Adel Khalaf Hamoudi and Thuraya Amer AbdulHussein}, title = {Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model}, journal = {American Journal of Physics and Applications}, volume = {5}, number = {3}, pages = {35-40}, doi = {10.11648/j.ajpa.20170503.11}, url = {https://doi.org/10.11648/j.ajpa.20170503.11}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ajpa.20170503.11}, abstract = {Chaotic properties of nuclear energy spectra in A=32 nuclei are investigated via the framework of the nuclear shell model. The energies (the main object of this investigation) are calculated through accomplishing shell model calculations employing the OXBASH computer code with the realistic effective interaction of W in the isospin formalism. The A=32 nuclei are supposed to have an inert 16O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian calculations, the spectral fluctuations (i.e., the nearest neighbor level spacing distributions P(S) and the Δ3 statistics) are well characterized by the Gaussian orthogonal ensemble of random matrices. Besides, they show no dependency on the spin J and isospin T. For unperturbed hamiltonian calculations, we find a regular behavior for the distribution of P(S) and an intermediate behavior between the GOE and the Poisson limits for the Δ3 statistics.}, year = {2017} }
TY - JOUR T1 - Spectral Fluctuations in A=32 Nuclei Using the Framework of the Nuclear Shell Model AU - Adel Khalaf Hamoudi AU - Thuraya Amer AbdulHussein Y1 - 2017/06/26 PY - 2017 N1 - https://doi.org/10.11648/j.ajpa.20170503.11 DO - 10.11648/j.ajpa.20170503.11 T2 - American Journal of Physics and Applications JF - American Journal of Physics and Applications JO - American Journal of Physics and Applications SP - 35 EP - 40 PB - Science Publishing Group SN - 2330-4308 UR - https://doi.org/10.11648/j.ajpa.20170503.11 AB - Chaotic properties of nuclear energy spectra in A=32 nuclei are investigated via the framework of the nuclear shell model. The energies (the main object of this investigation) are calculated through accomplishing shell model calculations employing the OXBASH computer code with the realistic effective interaction of W in the isospin formalism. The A=32 nuclei are supposed to have an inert 16O core with 16 nucleons move in the 1d5/2, 2s1/2 and 1d3/2 orbitals. For full hamiltonian calculations, the spectral fluctuations (i.e., the nearest neighbor level spacing distributions P(S) and the Δ3 statistics) are well characterized by the Gaussian orthogonal ensemble of random matrices. Besides, they show no dependency on the spin J and isospin T. For unperturbed hamiltonian calculations, we find a regular behavior for the distribution of P(S) and an intermediate behavior between the GOE and the Poisson limits for the Δ3 statistics. VL - 5 IS - 3 ER -