Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.
Published in | International Journal of High Energy Physics (Volume 5, Issue 1) |
DOI | 10.11648/j.ijhep.20180501.13 |
Page(s) | 12-22 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2018. Published by Science Publishing Group |
Preonic Quark, Quasi-Crystal Quark, Bose-Einstein Condensate, Particles Cold Genesis, Dark Matter, Gammon
[1] | Arghirescu, M., “The material structures genesis and field effects”, Ed. MatrixROM, Bucharest, 2006. |
[2] | Arghirescu, M., “The Cold Genesis”, Ed. Invel- Multimedia, 2011; viXra, 1104.0043, 2012. |
[3] | Arghirescu, M., “The Cold Genesis of Matter and Fields”, Ed. SciencePG, 2015. |
[4] | Arghirescu, M., ‘A Quasi-Unitary Pre-Quantum theory of Particles and Fields and someTheoretical Implications’, IJHEP, july, 80-103, 2015. |
[5] | Arghirescu, M., ‘A preonic quasi-crystal quark model based on a cold genesis theory and on the experimentally evidenced neutral boson of 34 me’, Global Journal of Physics Vol. 5, No 1, 2016, pp. 496-504. |
[6] | Arghirescu, M., ”The Experimental Evidences for a 34 me Neutral Boson, Predicted by a Particles Cold Genesis Theory, as Argument for a Preonic Quark Model”, IJHEP, Vol. 3, No. 4, 2016, pp. 25-32. |
[7] | Islama, M. M. & Luddyb, R. J., ”High Energy Elastic Scattering in Condensate Enclosed Chiral Bag Model and TOTEM Elastic Measurements at LHC at 7TeV”, The EDS Blois, 9-13 sept. 2013. |
[8] | Yan, Y., & Tegen, R., “N-N Scattering and Nucleon Quark core”, Science Asia, 27, 251, 2001. |
[9] | Arghirescu, M., ”A Revised Model of Photon Resulted by an Etherono-QuantonicTheory of Fields”, Open Access Library Journal, 2: e1920, 2015. |
[10] | R. D. Chipman, L. D. Jennings, Phys. Rev. 132 (1995) 728; Greenberg, O. W., Yodh, G. B., Phys. Rev. Lett., 32,1974, p. 1473. |
[11] | H. Chen, G. F. Burgio, H. J. Schulze, N. Yasutake, ‘Structure of the hadron-quark mixed phase in protoneutron stars’, Astronomy & Astrophysics Journ., Vol. 551, March 2013, A13. |
[12] | M. G. Alford, K. Rajagopal et al., ‚Color Superconductivity in dense Quark Matter’, arXiv:0709.4635v2, 2008. |
[13] | Aaij, R. et al. (LHCb collaboration) "Observation of J/ψp resonances consistent with pentaquark states in Λ0b→J/ψK−p decays", Physical Review Letters, 115 (7), 2015; arXiv: 1507.03414 . |
[14] | Madsen, J., Phys. Rev. Lett. 85, 10, 2000. |
[15] | Merali, Z., ¸’Astronomers look to quark stars for a fifth dimension’, New Scientist, 23 June 2007. |
[16] | Arghirescu. M., ‘A Correspondence with the Bag Model of a Pre-quantum B.-E. Condensate Model of Nucleon’, IJHEP, Vol. 3, Issue 2, April, 10-17, 2016. |
[17] | Böhmer, C. G., Harko, T., ‘Can dark matter be a Bose-Einstein condensate?’; arXiv:0705.4158v4 [astro-ph] 21 Jun 2007. |
[18] | Saint-Venant, A. ‘Mémoire sur la théorie de la résistance des fluides. Solution du paradoxe proposé à ce sujet par d'Alembert aux géomètres. Comparaison de la théorie aux expériences", Comptes Rendus des Séances de l'Académie des Sciences, 24: 243–246, 1847. |
[19] | Tyron, E.P., “Is the Universe a Vacuum Fluctuation?” Nature vol. 246, 1973, p.p. 396–397. |
APA Style
Marius Arghirescu. (2018). The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields. International Journal of High Energy Physics, 5(1), 12-22. https://doi.org/10.11648/j.ijhep.20180501.13
ACS Style
Marius Arghirescu. The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields. Int. J. High Energy Phys. 2018, 5(1), 12-22. doi: 10.11648/j.ijhep.20180501.13
AMA Style
Marius Arghirescu. The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields. Int J High Energy Phys. 2018;5(1):12-22. doi: 10.11648/j.ijhep.20180501.13
@article{10.11648/j.ijhep.20180501.13, author = {Marius Arghirescu}, title = {The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields}, journal = {International Journal of High Energy Physics}, volume = {5}, number = {1}, pages = {12-22}, doi = {10.11648/j.ijhep.20180501.13}, url = {https://doi.org/10.11648/j.ijhep.20180501.13}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijhep.20180501.13}, abstract = {Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark.}, year = {2018} }
TY - JOUR T1 - The Explaining of the Elementary Particles Cold Genesis by a Preonic Quasi-Crystal Model of Quarks and a Pre-Quantum Theory of Fields AU - Marius Arghirescu Y1 - 2018/04/09 PY - 2018 N1 - https://doi.org/10.11648/j.ijhep.20180501.13 DO - 10.11648/j.ijhep.20180501.13 T2 - International Journal of High Energy Physics JF - International Journal of High Energy Physics JO - International Journal of High Energy Physics SP - 12 EP - 22 PB - Science Publishing Group SN - 2376-7448 UR - https://doi.org/10.11648/j.ijhep.20180501.13 AB - Through a preonic quasi-crystalline quark model, resulted as Bose-Einstein condensate of gammons: g*= (e+e-) and by a pre-quantum cold genesis theory of matter and fields, which predicted the existence of a preon z0 » 34 me experimentally evidenced in 2015, the elementary particles genesis is explained by the cold genesis of two preonic bosons with hexagonal symmetry: zp = 7z0; z2 = 4z0, which explains also the stability of quarks, by a mechanism with a first step of z*/(q± /q0) *- pre-cluster forming by magnetic interaction and a second step of z/(q± /q0)- collapsed cluster forming , with the aid of magnetic confinement, with z = (z0 , z2 , zp) and (q± /q0)- quark or pseudo-quark, resulting some predictions for bosonic dark matter constituents and for multi-quark particles of cold genesis, such as: 2450 me; 2685.4 me tetra-quark; 3063.8 me penta-quark; 2720 me, 3672.4 me hexa-quark; 3329 me, 4762.2 me hepta-quark. VL - 5 IS - 1 ER -