Concrete brittle fracture and low tensile strength constitute an important durability problem, since they can lead to disastrous damage and failure of the reinforced concrete structures. The improvement of concrete mechanical properties by adding steel fibers to plain concrete is considered as an interesting solution to the problem. This work fits into the continuity of scientific contributions in the field of Steel Fiber Reinforcement Concrete (SFRC). It relies on an experimental study conducted to examine compressive, flexural and abrasion resistance of steel fiber reinforced concrete specimens. The used Steel Fibers (S.F) are curved steel elements with a length to diameter ratio equal to 67. Concrete is made of local materials. The steel fiber contents examined are 0.5%, 1% and 1.5%. The purpose of this research is to investigate the mechanical performances of steel fibers reinforced concrete regarding compressive strength, flexural strength, mechanical abrasion and ductility according to the specimen age. The experimental results show a significant improvement in the mechanical behavior of the SFRC specimens in comparison with plain concrete without reinforcement.
Published in | International Journal of Mechanical Engineering and Applications (Volume 1, Issue 3) |
DOI | 10.11648/j.ijmea.20130103.12 |
Page(s) | 69-77 |
Creative Commons |
This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited. |
Copyright |
Copyright © The Author(s), 2013. Published by Science Publishing Group |
Steel Fiber Reinforcement, Compressive Strength, Flexural Strength, Abrasion Weight Loss
[1] | Rossi, P., 1998. Les bétons de fibresmétalliques. Presse de l’ENPC. |
[2] | Serna Ros P., (1984), "Etude de la contribution des fibresmétalliques à l'amélioration du comportement du béton au cisaillement", Thèse à l'ENPC, 1984, 77 p. |
[3] | Fanella D., Naaman A.E., (1985), "Stress-Strain Properties of Fiber Reinforced Mortar in Compression", ACI Materials Journal, vol. 82, n° 4, 1985, pp. 475-483. |
[4] | Soroushian P., Lee C.-D., (1990), "Tensile strength of steel fiber reinforced concrete. Correlation with some measures of fiber spacing", ACI materials Journal, vol. 87, n°6, 1990, pp. 541-546. |
[5] | Balaguru P., Dipsia M.G., (1993), "Properties of fiber reinforced high-strength semi-lightweight concrete", ACI Materials Journal, vol. 90, n°5, 1993, pp. 399-405. |
[6] | Ramakrishnan V., Coyle W.V., Kulandaisamy V., Schrader E.K., (1981), "Performance Characteristics of Fiber Reinforced Concretes with Low Fiber Contents", ACI Materials Journal, vol. 78, n° 5, 1981, pp. 388-394. |
[7] | Harrouche N., (1989), "Formulation etcomportement à la fissuration des fibresmétalliques", thèse de Doctorat, Université Paris 6, 1989. |
[8] | Paillere A.M., (1993), "Le béton de fibresmétalliques, Etatsactuels des connaissances", Annales de l'ITBTP, sériebéton, 302, 1993, n° 515, pp. 39-68. |
[9] | Gopalaratman, V.S., and Shah S.P., 1985. Softening Response of Plain Concrete in Direct Tension. ACI Journal, 82(3), 310-323. |
[10] | Damgir, R.M., and Ghugal, Y. M., 2010. Prediction of compressive strength by incorporating steel fibers, 35th Conference on Our World in Concrete & Structures, Singapore, 25 - 27. |
[11] | Zollo R.F, (1980), "Fibrous concrete flexural testing-Developing standardized techniques", ACI Materials Journal, vol. 77, n° 5, 1980, pp.363-368. |
[12] | Atassi M.F., (1997), "Etude du comportement des bétons de fibresmétalliques : influence de la géométrie des fibres, du dosage et de l'anisotropie de leurrépartition", Thèse de l'INSA de Lyon, 1997, 222 p. |
[13] | Daniel L., (2001), "Comportement de poutres en béton à hautes performances fibré sous sollicitationssismiques", Thèse de Doctorat, Université de Nantes, 2001, 143 p. |
[14] | Dupont D., Vandewalle L., (2005), "Distribution of steel fibres in rectangular sections", Cement and Concrete Composites, vol. 27, n°3, 2005, pp. 391-398. |
[15] | S. ROLS, Conception d'un composite ciment-fibres de polypropylène ductile et durable, ThèseGénie des matériaux. Lyon : INSA, 1996, 206p. |
[16] | Casanova, P., bétons renforcés de fibresmétalliques du matériau a la structure Etude expérimentaleetanalyse du comportement de poutressoumises à la flexion et à l'efforttranchant, ThèseDoctorat, EcoleNationale des Ponts et Chaussées, 1995, 225 pages. |
[17] | N. Banthia, M. Sappakittipakom.Toughness enhancement in steel fiber reinforced concrete through fiber hybridization. Cement and concrete research. 37 (2007) 1366- 1372. |
[18] | M. Bentalha, H. Houari. Etude du comportement des matrices cimentairesrenforcées defibresmétalliques sous chargement monotonecroissant. Sciences &Technologie. 25(2007) 51-58. |
[19] | Metha, P. K. &GerwickJr, B. C. (1982). Cracking-Corrosion Interaction in Concrete Exposed to Marine Environment. Concrete International. v. 10, p. 45-51 |
[20] | Mehta, P. K. &Monteiro, P. J. M. (2006). Concrete: microstructure, properties and materials, McGraw-Hill, Columbus, USA |
[21] | HU.XG.Momber, AW.YinYG; Hydro-abrasive erosion of steel fibre reinforced hydraulique concrete Wear; 2002 :253 :848-54. |
[22] | R. Nilica, H. Harmuth.; Mechanical and fracture mechanical characterization of building materials used for external insulation composite systems. Cement and Concrete Research, 35(2007) 1641-1645. |
[23] | Nicholas, J. P., 2002. Abrasion wear, abrasion resistance, and related strength characteristics in concrete, with special reference to concrete pavers. Thesis (PhD). University of the Witwatersrand. Johannesburg |
[24] | NFEN12390-1(2003),normeeuropéenne,Essai pourbétondurci,Partie1 :Forme, dimensions et autresexigences relatives aux éprouvettes et aux moules,Octobre 2001. |
[25] | NFEN12390-3(2003),normeeuropéenne,Essai pourbétondurci,Partie3:Résistanceàla compressiondes éprouvettes,2003. |
[26] | NFEN12390-5,Essai pour bétondurci, Partie5 : Résistance à la flexion suréprouvettes, Octobre 2001. |
[27] | P18-409 (avril 1993) NormeFrançaiseafnor 1993. Béton avec fibresmétalliques. Essai de flexion. |
[28] | RM Damgir , Y M Ghugal,; PREDICTION OF COMPRESSIVE STRENGTH BY INCORPORATING STEEL FIBERS ; 35th Conference on OUR WORLD IN CONCRETE & STRUCTURES: 25 - 27 August 2010, Singapore (Article Online Id: 100035028); |
[29] | Dhakal, R.P., Wang, C., Mander, J.B. (2005) Behavior of steel fibre reinforced concrete in compression. Nanjing: International Symposium on Innovation & Sustainability of Structures in Civil Engineering, Nov 2005. |
[30] | Dragica Jevtić, Dimitrije Zakić, Aleksandar Savić; MODELING OF PROPERTIES OF FIBER REINFORCED CEMENT COMPOSITES; Architecture and Civil Engineering Vol. 6, No 2, 2008, pp. 165 – 172; DOI:10.2298/FUACE0802165J. |
[31] | Zoran J. Grdica,Gordana A. ToplicicCurcic a, Nenad S. Ristic a, Iva M. Despotovic b;Abrasion resistance of concrete micro-reinforced with polypropylene fibers;http://dx.doi.org/10.1016/j.conbuildmat.2011.07.044. |
[32] | Yu-Wen Liu, Tsong Yen, Tsao-Hua Hsu; Abrasion erosion of concrete by water-borne sand; Cement and Concrete Research 36 (2006) 1814–1820. |
[33] | Hui Li ∗, Mao-hua Zhang, Jin-ping Ou ; Abrasion resistance of concrete containing nano-particles for pavement;Wear 260 (2006) 1262–1266. |
[34] | Rafat Siddique ,Kushal Kapoor, El-Hadj Kadri, Rachid Bennacer; Effect of polyester fibres on the compressive strength and abrasion resistance of HVFA concrete; http://dx.doi.org/10.1016/j.conbuildmat.2011.09.011 |
APA Style
B. Setti, M. Taazount, S. Hammoudi, F. Setti, M. Achit-Henni. (2013). Compressive, Flexural and Abrasive Performances of Steel Fiber Reinforced Concrete Elements. International Journal of Mechanical Engineering and Applications, 1(3), 69-77. https://doi.org/10.11648/j.ijmea.20130103.12
ACS Style
B. Setti; M. Taazount; S. Hammoudi; F. Setti; M. Achit-Henni. Compressive, Flexural and Abrasive Performances of Steel Fiber Reinforced Concrete Elements. Int. J. Mech. Eng. Appl. 2013, 1(3), 69-77. doi: 10.11648/j.ijmea.20130103.12
AMA Style
B. Setti, M. Taazount, S. Hammoudi, F. Setti, M. Achit-Henni. Compressive, Flexural and Abrasive Performances of Steel Fiber Reinforced Concrete Elements. Int J Mech Eng Appl. 2013;1(3):69-77. doi: 10.11648/j.ijmea.20130103.12
@article{10.11648/j.ijmea.20130103.12, author = {B. Setti and M. Taazount and S. Hammoudi and F. Setti and M. Achit-Henni}, title = {Compressive, Flexural and Abrasive Performances of Steel Fiber Reinforced Concrete Elements}, journal = {International Journal of Mechanical Engineering and Applications}, volume = {1}, number = {3}, pages = {69-77}, doi = {10.11648/j.ijmea.20130103.12}, url = {https://doi.org/10.11648/j.ijmea.20130103.12}, eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmea.20130103.12}, abstract = {Concrete brittle fracture and low tensile strength constitute an important durability problem, since they can lead to disastrous damage and failure of the reinforced concrete structures. The improvement of concrete mechanical properties by adding steel fibers to plain concrete is considered as an interesting solution to the problem. This work fits into the continuity of scientific contributions in the field of Steel Fiber Reinforcement Concrete (SFRC). It relies on an experimental study conducted to examine compressive, flexural and abrasion resistance of steel fiber reinforced concrete specimens. The used Steel Fibers (S.F) are curved steel elements with a length to diameter ratio equal to 67. Concrete is made of local materials. The steel fiber contents examined are 0.5%, 1% and 1.5%. The purpose of this research is to investigate the mechanical performances of steel fibers reinforced concrete regarding compressive strength, flexural strength, mechanical abrasion and ductility according to the specimen age. The experimental results show a significant improvement in the mechanical behavior of the SFRC specimens in comparison with plain concrete without reinforcement.}, year = {2013} }
TY - JOUR T1 - Compressive, Flexural and Abrasive Performances of Steel Fiber Reinforced Concrete Elements AU - B. Setti AU - M. Taazount AU - S. Hammoudi AU - F. Setti AU - M. Achit-Henni Y1 - 2013/08/30 PY - 2013 N1 - https://doi.org/10.11648/j.ijmea.20130103.12 DO - 10.11648/j.ijmea.20130103.12 T2 - International Journal of Mechanical Engineering and Applications JF - International Journal of Mechanical Engineering and Applications JO - International Journal of Mechanical Engineering and Applications SP - 69 EP - 77 PB - Science Publishing Group SN - 2330-0248 UR - https://doi.org/10.11648/j.ijmea.20130103.12 AB - Concrete brittle fracture and low tensile strength constitute an important durability problem, since they can lead to disastrous damage and failure of the reinforced concrete structures. The improvement of concrete mechanical properties by adding steel fibers to plain concrete is considered as an interesting solution to the problem. This work fits into the continuity of scientific contributions in the field of Steel Fiber Reinforcement Concrete (SFRC). It relies on an experimental study conducted to examine compressive, flexural and abrasion resistance of steel fiber reinforced concrete specimens. The used Steel Fibers (S.F) are curved steel elements with a length to diameter ratio equal to 67. Concrete is made of local materials. The steel fiber contents examined are 0.5%, 1% and 1.5%. The purpose of this research is to investigate the mechanical performances of steel fibers reinforced concrete regarding compressive strength, flexural strength, mechanical abrasion and ductility according to the specimen age. The experimental results show a significant improvement in the mechanical behavior of the SFRC specimens in comparison with plain concrete without reinforcement. VL - 1 IS - 3 ER -