| Peer-Reviewed

Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach

Received: 26 July 2014     Accepted: 12 August 2014     Published: 30 September 2014
Views:       Downloads:
Abstract

Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied.

Published in International Journal of Materials Science and Applications (Volume 3, Issue 5)
DOI 10.11648/j.ijmsa.20140305.29
Page(s) 268-273
Creative Commons

This is an Open Access article, distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution and reproduction in any medium or format, provided the original work is properly cited.

Copyright

Copyright © The Author(s), 2014. Published by Science Publishing Group

Keywords

Graphene Möbius Strips, Magnetic Moment, and Spin-Dependent Density of States

References
[1] C-W. Chang, M. Liu, S. Nam, S. Zhang, Y. Liu, G. Bartal, and X. Zhang, Phys. Rev. Lett. 105, 235501 (2010).
[2] J. Gravesen and M. Willatzen, Phys. Rev. A 72, 032108 (2005).
[3] N. Zhao, H. Dong, S. Yang, and C.P Sun, Phys. Rev. B 79, 125440 (2009).
[4] D .J. Ballon and H. U. Voss, Phys. Rev. Lett. 101, 247701 (2008).
[5] S. Tanda, T. Tsuneta, Y. Okajima, K. Inagaki, K. Yamaya, and N. Hatakenaka, Nature(London) 417, 397 (2002).
[6] D. Ajami, O. Oeckler, A. Simon, and R. Herges, Nature (Londen) 426, 819 (2003).
[7] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Sceince, 321, 385 (2008).
[8] D. E. Jiang and S. Dai, J. Phys. Chem. C 112, 5438 (2008).
[9] M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn, 65, 1920 (1996).
[10] Y-W. Son, M. L. Cohen, and S. G. Louie, Nature (Londen) 444, 347 (2006).
[11] O. V. Yazyev and M. I. Katsnelson, Phys. Rev. Lett. 100, 047209 (2008).
[12] L. Brey, H. A. Fertig, and S. Das Sarma, Phys. Rev. Lett. 99, 116802 (2007).
[13] S. Konschuh, M. Gmitra, and J. Fabian, Phys. Rev. B 82, 245412 (2010).
[14] K.WakabayashiandK.Harigaya,J.Phys.Soc.Jpn.72,998(2003).
[15] R. Herges, Chem. Rev 106, 4820 (2006).
[16] E. W. S. Caetano, V. N. Freire, S. G. dos Santos, D. S. Galvao, and F. Sato, J. Chem. Phys. 128, 164719 (2008).
[17] Z. L. Guo, Z. R. Gong, H. Dong, and C. P. Sun, Phys. Rev. B 80, 195310 (2009).
[18] M. Z. Hasan and C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
[19] AD Güçlü, M Grabowski, P Hawrylak, Phys. Rev. B 87, 035435 (2013).
[20] SY Yue, QB Yan, ZG Zhu, HJ Cui, QR Zheng, G Su, Carbon 71, 150 (2014).
[21] X. Wang, X. Zhang, M. Ni, L. Zou, and Z. Zeng, Appl. Phys. Lett., 97, 123103 (2010).
[22] J. B. Foresman and A. E. Frisch, Exploring Chemistry with Electronic Structure Methods (Gaussian Inc. 1996).
[23] A. D. Becke, J. Chem. Phys. 98, 5648 (1993).
[24] E. Rudberg, P. Salek, and Y. Luo, Nano Lett. 7, 2211 (2007).
[25] Er-Jun Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou, Appl. Phys. Lett. 91, 243116 (2007).
[26] S. Yang and M. Kertesz, J. Phys. Chem. A. 110, 9771 (2006).
[27] K. D. Dobbs and W. J. Hehre, J. Comput. Chem. 8, 880 (1987).
[28] P. Shemella, Y. Zhang, M. Mailman, P. M. Ajayan, and S. K. Nayak, Appl. Phys. Lett. 91, 042101 (2007).
[29] E. L. Starostin and G. H. M. Van Hejden, Nature Materials 6, 563 (2007).
[30] Young-Woo Son, Marvin L. Cohen, and Steven G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
[31] J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1994).
[32] Er-Jum Kan, Zhenyu Li, Jinlong Yang, and J. G. Hou, Appl. Phys. Lett. 91, 243116(2007).
[33] H. Zheng and W. Duley, Phys. Rev. B 78, 155118 (2008).
Cite This Article
  • APA Style

    Hossein Mazidabadi, Hamidreza Simchi, Mahdi Esmaeilzadeh. (2014). Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach. International Journal of Materials Science and Applications, 3(5), 268-273. https://doi.org/10.11648/j.ijmsa.20140305.29

    Copy | Download

    ACS Style

    Hossein Mazidabadi; Hamidreza Simchi; Mahdi Esmaeilzadeh. Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach. Int. J. Mater. Sci. Appl. 2014, 3(5), 268-273. doi: 10.11648/j.ijmsa.20140305.29

    Copy | Download

    AMA Style

    Hossein Mazidabadi, Hamidreza Simchi, Mahdi Esmaeilzadeh. Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach. Int J Mater Sci Appl. 2014;3(5):268-273. doi: 10.11648/j.ijmsa.20140305.29

    Copy | Download

  • @article{10.11648/j.ijmsa.20140305.29,
      author = {Hossein Mazidabadi and Hamidreza Simchi and Mahdi Esmaeilzadeh},
      title = {Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach},
      journal = {International Journal of Materials Science and Applications},
      volume = {3},
      number = {5},
      pages = {268-273},
      doi = {10.11648/j.ijmsa.20140305.29},
      url = {https://doi.org/10.11648/j.ijmsa.20140305.29},
      eprint = {https://article.sciencepublishinggroup.com/pdf/10.11648.j.ijmsa.20140305.29},
      abstract = {Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied.},
     year = {2014}
    }
    

    Copy | Download

  • TY  - JOUR
    T1  - Electronic and Magnetic Properties of Graphene Möbius Strips: Density Functional Theory Approach
    AU  - Hossein Mazidabadi
    AU  - Hamidreza Simchi
    AU  - Mahdi Esmaeilzadeh
    Y1  - 2014/09/30
    PY  - 2014
    N1  - https://doi.org/10.11648/j.ijmsa.20140305.29
    DO  - 10.11648/j.ijmsa.20140305.29
    T2  - International Journal of Materials Science and Applications
    JF  - International Journal of Materials Science and Applications
    JO  - International Journal of Materials Science and Applications
    SP  - 268
    EP  - 273
    PB  - Science Publishing Group
    SN  - 2327-2643
    UR  - https://doi.org/10.11648/j.ijmsa.20140305.29
    AB  - Electronic and magnetic properties of graphene Möbius strips with different widths are studied using density functional theory. It is shown that the multiplicity of the Möbius strip, the cohesive energy, and the band gap energy increase with increasing the width of Möbius strip. We show that the magnetic moment of Möbius strip decreases with increasing the curvature and strain. Then the effects of an external electric field applied in the direction of the Möbius strip axis are studied and it is found that the Möbius strip keeps its metallic surface (edge) states even in the presence of the electric field. For sufficiently high applied electric field, the spin-flipping can take place in the Möbius strip. In addition, in contrast with the graphene nanoribbons, the graphene Möbius strips show half-semiconducting properties when an external electric field is applied.
    VL  - 3
    IS  - 5
    ER  - 

    Copy | Download

Author Information
  • Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran

  • Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran; Semiconductor Technology Center, Tehran, Iran

  • Department of Physics, Iran University of Science and Technology, Narmak, Tehran 16844, Iran

  • Sections